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ABSTRACT
Learning Analytics (LA) is a bricolage field that requires a concerted
effort to ensure that all stakeholders it affects are able to contribute
to its development in a meaningful manner. We need mechanisms
that support collaborative sense-making. This paper argues that
graphical causal models can help us to span the disciplinary divide,
providing a new apparatus to help educators understand, and poten-
tially challenge, the technical models developed by LA practitioners
as they form. We briefly introduce causal modelling, highlighting
its potential benefits in helping the field to move from associations
to causal claims, and illustrate how graphical causal models can
help us to reason about complex statistical models. The approach
is illustrated by applying it to the well known problem of at-risk
modelling.

CCS CONCEPTS
• Computing methodologies→ Modeling and simulation; •
Human-centered computing→Collaborative and social com-
puting theory, concepts and paradigms.
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1 INTRODUCTION
To think at all is to forget. To know at all is to abstract.
When we reason scientifically, we go further and deeper
with thought. We become deliberate with what to forget
and mindful of how to abstract. Essa [17, p36]

Learning Analytics (LA) is sometimes referred to as a bricolage
field [19] that requires people to work in a ‘middle space’ between
the learning and analytical sciences [30, 58] to bridge epistemic
boundaries [20]. As such, it is a field that can suffer from problems
of communication, where people from very different cultural back-
grounds talk past one another. Often, we see educational experts
excluded from the conversation, unable to judge or evaluate highly
technical approaches that rely upon advanced statistics, machine
learning, and other methods that quickly come to resemble a black
box [40]. This difficulty in traversing disciplinary boundaries leads
to a number of critical challenges for the field around who gets to
Participate in defining the questions that the field explores [64], and
how educational Theory can be used to inform results. Furthermore,
the field is often accused of having a lack of Transparency, which
can make it difficult to Intervene in the system even with strong
statistical results.

In this paper we will argue that many of these problems can
be addressed, at least partially, by thinking with causal models. We
will demonstrate that the visual component of causal modelling,
Directed Acyclic Graphs (DAGs), can be used with little mathemat-
ical expertise to provide a highly interpretable artefact that sup-
ports genuine transdisciplinary collaboration among technical and
non-technical stakeholders. After elaborating upon the problems
introduced above (Section 2), and then providing a brief introduc-
tion to the framework first introduced by Pearl [41] (Section 3), we
will demonstrate its utility in thinking about complex educational
processes by reasoning through a real world scenario encountered
by one of the authors in his position as an LA professional (in
Section 4).

1.1 Challenges facing the field of Learning
Analytics

Beyond the technical challenges of gathering useful data from mul-
tiple disjoint LA systems [28], building new methods of analysis
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[31], and implementing them at scale [9, 61], LA faces a number of
more social challenges that arise from its bricolage nature. Four of
these will form the focus of this paper.

1.1.1 Problems of Participation. LA can be an intimidatingly tech-
nical field due to its reliance upon advanced statistics and machine
learning methods in analysing educational data. This can make
it hard for educators to have a say in what gets studied, as it is
possible for a data analyst to collect a dataset, analyse it for patterns
and report findings without any consultation with educational pro-
fessionals or researchers. All too often, we see data intensive fields
fall prey to ‘data dredging’, where a complex analysis is performed
which does little to improve the actual problems faced by stake-
holders [4], and LA is not immune to this problem [27]. We believe
that much of this issue springs from a lack of genuine collaboration
between analysts (who know and understand the methods to apply
to the data) and educators (who understand the domain, and so
should have influence over what critical questions are asked by LA
researchers). In short: Who gets to define the problems that LA seeks
to address? [64]

While stakeholder engagement and participatory approaches are
common in the field, we must take care to ensure that a genuine
collaboration emerges, where educational experts are not sidelined
due to an inability to penetrate the fog often created by complex
analytical methods. But how can we invite people in, to genuinely
collaborate when the methodologies used can take significant ex-
pertise to master? One potential solution makes use of Participatory
Design (PD) to create accessible design representations at the point
of deciding what type of LA to implement [1], an example of the
broader set of Human-Centered Design (HCD) methods [6]. These
representations can be manipulated by participants as they think
through an educational problem. Similarly, a recent paper, by Wise
et al. [64] has proposed that missing data can be highlighted to help
stakeholders understand what is not there in a LA report as much
as what is, so helping educators to reach informed decisions from a
position that is aware of potential blind spots. Such methods move
us closer to what Callon et al. [10] term technical democracy, but
they do so by attending to the need for informal representations,
typically of the sociotechnical system in which a tool must be em-
bedded, or user interface designs. Data scientists must ultimately
adopt, adapt or invent algorithms informed by the qualitative in-
sights that non-technical stakeholders typically bring, and there
are to our knowledge no representational techniques that assist
diverse stakeholders to formalize the domain insights gained from
PD/HCD.

1.1.2 Problems of Theory. Education is a vast field, that has a long
history of its own data, methods, and theories about how people
learn [18]. It is essential that we work hard to link LA to well estab-
lished principles and results. However, it is a well accepted challenge
to map the low level activity data from online platforms/sensors,
to higher level and theoretically informed educational constructs
[63]. Educational data is complex, with many variables over few
observations, which can make it difficult to extract insights from
the chaff of clickstream data that is often collected. Despite claims
to the contrary by well known researchers in Artificial Intelligence
[36], big data does not always lead to better models, at least, not in
education. Rather, a data analysis that is not informed by theory can

fall prey to problems like Simpson’s paradox, or link variables that
we know cannot be correlated, and fail to spot patterns in difficult
to identify subgroups [37]. Indeed, “if theory-driven models can be
wrong, data-driven models can be fragile” [21, p4].

Unfortunately, a literature review performed by Wong et al. [65]
demonstrates that while educational theories such as self-regulated
learning, motivation, and social constructivism have been utilised
in a number of LA studies, the results were largely correlational. As
a field we are yet to move to a position where educational theories
commonly drive our analysis. Moving towards more theoretically
informed data analyses would help to improve participation by
ensuring that LA is well linked to concepts that educational re-
searchers recognise and understand. It would also help us to ensure
that surprising data driven results could be interpreted, queried,
and challenged if they were poorly founded.

This leads us to a second question: How can we ensure that theory
informs LA analysis?

A number of recent papers have started to make links between
educational theory and LA. Marzouk et al. [33] links the data col-
lected in a LA system to the well regarded educational theory of
Self Regulated Learning (SRL), and Epistemic Network Analysis
(ENA) [54] has been used to link the coding of large data sets de-
scribing conversation to theoretically justified constructs. However,
it is clear that more methods are required in this space. This raises
questions about how we can wean our models from association and
start to move towards stronger claims.

1.1.3 Problems of Transparency. How can non-experts be sup-
ported in critiquing LA assumptions and solutions? There is a
long and distinguished line of work that has provided a critical
lens on the way in which data and analytics can be misused, high-
lighting factors such as: the ways that worldviews underpin classi-
fication schemes [3]; risks that systematic, discriminatory biases
can permeate machine learning algorithms [2]; and the dynamics
by which predictive models can disconnect from reality through
feedback loops [38]. Indeed, while critical data studies has started
to focus upon LA [51, 53], the field has already explored many
of these issues (see for example the recent special issue edited by
Buckingham Shum and Luckin [7] and the references therein). The
challenge to turn these academic insights into a widely accessible,
practical means for contesting the results of an algorithm is widely
recognised as a critical factor for achieving responsible LA. This
problem is closely related to that of participation, as people can
only challenge the results of LA if the mechanism for generating
them can be inspected. If LA use models that cannot be inspected
and understood, their opaqueness ensures the resulting solutions
are unlikely to be trusted. There is a need to “make the assumption
behind the model more explicit and transparent” [49, p2949].

In short: Who gets to challenge the solutions delivered by LA?
Achieving an end state where all stakeholders can critique and

challenge LA solutions requires not just open, explainable or trans-
parent algorithms; we need tools for bridging the displacement
generated by sophisticated approaches and algorithms that require
substantial expertise to understand and to challenge.

1.1.4 Problems of Intervention. Finally, assuming that we have
passed these previous challenges, we find a new one emerging. How
should we act? LA seeks to improve learning and the environments
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in which it occurs, but for that to occur we need to close the loop
[14], by intervening in the systems that we study.

In short: What should we do now?

Regardless of howwell intentioned or theoretically grounded
our LA aspirations are, we must be able to implement
them as running code using real data, creating a com-
pelling user experience, with benefits for learners and/or
educators. Buckingham Shum [8, p7]

We all know the dangers associated with assuming that corre-
lation equals causation [46], and yet, sound arguments have been
presented that we have an obligation to act if we think that a stu-
dent needs support [44]. We need ways to ensure that our LA has a
strong link to reality, and makes grounded and well founded claims
about what a decision maker, student, or educator could change
to improve the outcomes modelled. How can we work towards
ensuring that the models generated by LA are actionable [39], with
results that can be mapped to definable educational constructs?
As such, this problem is highly related to our problem of Theory
described above.

1.2 Diagrammatic reasoning
As Wise et al. frame it, “who gets a place at the table” [64] when
decisions are made to shape an analysis in LA? The previous section
has illustrated that in a field as diverse as LA, it may not be enough
to just bring the various stakeholders to the table, we must create
tools that enable a collaborative sense-making [29].

There is a well established research literature in cognitive science
and human-computer interaction, studying the properties of visual
representations that (sometimes) enhance individual and collective
reasoning. Their effectiveness is a function of the knowledge that a
viewer brings to the diagram, they are not informative in and of
themselves [11].

Designed well, a visual representation augments ‘internal cog-
nition’ in the mind with a form of ‘external cognition’ in the en-
vironment. As analysed by Scaife and Rogers [52], this operates
in multiple ways, including: (i) Computational offloading to reduce
cognitive effort compared to other representations (ii) Graphical
constraining to support specific kinds of reasoning; (iii) Continu-
ous internal/external interplay which shapes reasoning, and in turn
changes what we seek and see in the representation. Furthermore,
as argued by Shum and Hammond [56], the use of computational
aids to assist the design of interactive software tools brings both
product and process benefits. While the product of modelling the
problem formally is the ability for a tool to rigorously verify that
key criteria have been met (e.g. statistically, or using another for-
mal language), the process of modelling the problem to reach that
point can itself be extremely productive, requiring the analysts to
focus and structure their thinking, and explain their assumptions,
drawing attention to vague or missing information.

This paper will therefore make the case that a graphical causal
structure depicting the causal relationships between variables [41]
shows promise as a form of diagrammatic reasoning, enabling a
more diverse set of stakeholders to participate in a genuine and
collaborative definition of a LA model, a highly abstract process
that is typically left to analysts to code in opaque notation that

excludes others (even if they have been consulted). We start with
an introduction to causal modelling [41].

2 MODEL, OR CAUSAL MODEL?
To progress we must first understand how causal models differ
from statistical models. We start by noting that all models are
an abstraction, they attempt to trade a reduction in information
for an increase in knowledge. As such they have little value in
progressing towards ‘truth’, but they do help us to understand
the world and avoid misconceptions [17]. The statistical model
𝑌 = 𝑓 (𝑋 ) describes the effect of 𝑋 on 𝑌 via a process 𝑓 ; it is a self-
contained ‘small-world’ abstraction of nature. Obviously we would
want our variables 𝑋 and 𝑌 to closely represent reality, but how
closely we require 𝑓 to resemble nature’s own mechanisms depends
on the purpose of the model. An explanatory model requires them
to match as closely as possible but predictive models do not have
this restriction, as they care only for matching the patterns in 𝑋 to
𝑌 in the most accurate way; the process 𝑓 is less important [55]. For
instance we care little about how a model (𝑓 ) converts speech to text,
only that the sound of the words we say (𝑋 ) match closely with the
text (𝑌 ). If insteadwewant to use the same techniques to understand
the way in which the brain processes language we would gladly
settle for a less accurate model that offers more explanatory power.

An abundance of work has, understandably, been put into im-
proving the capacity of models andmachine learning tools to predict
an observable 𝑌 , given some input 𝑋 . For example, LA has devoted
much attention to the prediction of whether a student should be
classified as “at risk” (the variable 𝑌 ) given some set of observed
behaviour (the variables 𝑋 ) [12]. While the utility of ever more
accurate models has been questioned by some LA researchers [27],
few papers have explored the distinction between prediction and
explanation. However, as a field that attempts to explain behaviour,
and moreover, to assist educators to intervene to improve a state of
affairs, it is surely time for LA to move beyond the assumption that
accurate prediction suffices [42]. It is important that we work to
establish a close link between our small world statistical model 𝑓
and reality, or we risk a number of pathological outcomes, such as:
• We must individually question every statistical association
to determine if it is spurious or not.
• Explaining why something arises in the model is at best
opaque, and in fact may be impossible.
• “What if” questions are off limits, as they imagine a world
beyond what the data has seen.

These are the kinds of problems that causal inference frameworks
[41, 50] were designed to deal with. Causal frameworks search
for a causal relationship between 𝑋 and 𝑌 , and in doing so work
towards closing the gap between our statistical model and the real
world. This enhancement requires models that know something
more than just the data they were fed, because the problems above
require a different level of questioning, one that can deal with
interventions and counterfactuals [42]. This is commonly done by
adding a theoretical structure to the model.

2.1 Graphical causal structures
Intriguingly, one way to add this theoretical knowledge consists of
drawing a picture, a sketch of your assumptions about “what causes
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what”. Augmented by this diagram (formally known as a graphical
causal structure) the statistical model becomes a (graphical) causal
model. The task that this picture performs is to describe the assumed
paths of causal influence between the variables [41] in a way that a
model can interpret. Because the drawing needs to be understood
in the structured world of the model it must come in a particular
form; a Directed Acyclic Graph (DAG), such as the one depicted
in Figure 1, which could easily have been drawn in a conversation
between a modeller and an educator.

Figure 1: A simple causal Directed Acyclic Graph (DAG)

A graph is simply some blobs (nodes) with lines between them
(edges). The graph is directed because the lines are arrows: themodel
needs to learn aboutwhich variables are causes andwhich are effects;
does 𝑋 → 𝑌 (X cause Y) or does 𝑌 → 𝑋 (Y cause X)? The graph is
acyclic (no loops) to enforce a simplicity into the causal description:
no variable ends up a cause of itself 1. Despite it’s simplicity, Figure 1
encodes rich information that may be unknowable from data alone:
Some sort of an Intervention results in (i.e. causes) a better Outcome
for a student.

Structural Equation Models (SEM), in particular their model di-
agrams, are akin to a graphical causal model but over the years
they have moved away from making causal claims [41, p138]. So de-
spite their common ancestry and similarities, described in Pearl and
Mackenzie [42], the differences between causal DAGs and SEMs
are telling. DAGs emphasise the causal relationship between vari-
ables without initially specifying its functional form, delaying the
technical requirements for engaging with the model construction.

DAGs have a number of properties that could prove highly ben-
eficial to LA: they can elegantly communicate abstract structural
information, are underpinned by a rigorous mathematical frame-
work [41], and most importantly to the current argument, they
can open conversations with stakeholders using terms as simple as
“blobs” and “arrows”.

2.2 How does Learning Analytics currently
make causal claims?

Education has traditionally relied upon Randomised Controlled
Trials (RCTs) to make causal claims, if at all. Thus, a sample is
randomly split into a control group, and a group that receives an in-
tervention, with the difference in outcomes between the two groups
then used to link the intervention to a causal claim [60]. However,
such approaches are both expensive to run, and fall prey to ethical
quandaries. In particular, if we truly think that an intervention is
likely to lead to better student outcomes then we must weigh up
the importance of building up our evidence base against the duty
of care we owe to our students [44]. Ethical tensions quickly mount
up [26] when we attempt to run RCTs in a field with outcomes
that are so likely to impact upon (and possibly entrench) long term
advantages and disadvantages [51].

1Although we note there are ways to deal with this kind of causal feedback e.g. by
indexing the variables in time to stop the loop returning to the same ‘place’.

If LA groups decide not to run an RCT, then they need other
tools and frameworks to make causal claims. Interestingly, explicit
graphical causal models are rare in the educational domain. One
good example is provided by Ramirez-Arellano et al. [45] which
uses prior theory to build a causal model, in the form of a SEM.
Additionally, some studies have explicitly used causal discovery
techniques [13], where causal structure is discovered from a data
set via an algorithm.

More common are quasi-experimental techniques which induce
an implicit causal model through experimental design. One method,
matching [35], involves finding pairs of similar (matched) data
points, one who has received an educational intervention and one
who has not, to make semi-causal claims. Matching methods have
been used in the LA and Educational Data Mining (EDM) fields to
evaluate the impact of student facing dashboards [25] and assess
the effectiveness of intelligent tutoring systems [34]. The common
thread with all these applications was the goal of estimating the
effect of an intervention under the influence of a selection bias [5].

Throughout these examples researchers are encountering a sim-
ilar problem; how do I find the effect I am interested in when there
are confounding factors? This is a common enough problem to
have some call for an increase in attempts to address this complex
issue, but exactly how we might do this remains uncertain [48].

2.3 A hypothesis
We believe that causal models are useful per se, for the modelling
opportunities that they provide. As such, they should become an
object of increasing attention for the educational data sciences.
However, in this paper wewill focus upon a slightly different benefit
that we believe flows from a serious adoption of causal modelling:

Causal Models show promise for supporting a theo-
retically informed and more collaborative communica-
tion mechanism between stakeholders of different back-
grounds when defining LA models.

Rather than performing user studies, this paper will remain
largely theoretical. We will walk the reader through an example
of how DAGs help us to reason about a LA system, illustrating
the new insights that can be gained from an attempt to explicitly
impose causal structure on a dataset. However, before we can apply
causal modelling to educational data, we first need to introduce the
reader to the approach.

3 A VERY BRIEF INTRODUCTION TO
CAUSAL DAGS

In this section we provide a very brief introduction to causal mod-
elling with DAGs. Our discussion will privilege concepts that sup-
port transdisciplinary communication over statistical rigour. For
a deeper exploration of causal models see Pearl and Mackenzie
[42] for an approachable introduction, or Pearl [41] for the full
mathematical apparatus.

Let us start by supposingwewant tomodel the effect of having an
extensive home library on later academic achievement. We might
start by assuming that children with access to a Home Library
demonstrate improved Academic Achievement, as they are able to
make use of those books to practice reading and learn about the



Thinking with causal models: A visual formalism for collaboratively crafting assumptions LAK22, March 21–25, 2022, Online, USA

world beyond the family home. This relationship is introduced by
the simple DAG shown in Figure 2(a).

Home Library Academic Achievement

(a)

Scholarly Culture

Home Library Academic Achievement

(b)

Figure 2: Two simple alternative causal models that describe
the effect of a home library on a student’s academic achieve-
ment.

However, on presenting such a diagram to an educator they
would be able to raise an immediate (rather obvious to them) chal-
lenge to the model it represents, by pointing out that a child with
an extensive home library is likely to have parents with a more
scholarly background (after all, someone bought the books in the
library!) But, says the educator, would such parents not have an
impact upon the Academic Achievement of the student as well? At
this point the modeller could respond that this is actually a concept
that is well understood statistically: it is a possible confounding
effect upon our model [57]. The modeller could construct the DAG
shown in figure 2(b) to incorporate this new causal claim, and the
educator would be able to interrogate and approve (or challenge)
the new representation. While simple, this vignette demonstrates
the utility of a simple pictorial representation which has a well
defined modelling apparatus to support it. The educator is facili-
tated in understanding and contributing to the development of the
models shown in Figure 2, without needing to understand the full
complexity of the statistical model it represents.

Unpacking the statistical apparatus introduced in Figure 2 a little
more, the blobs (nodes) of the DAG represent variables that we have
decided to include in the model. The arrows (edges) in the DAG
represent our assumptions about how those variables influence one
another. A useful way of analysing a DAG is to pick two variables
that you want to explore the causal relationship between, (in this
case from Home Library to Academic Achievement), and classify
them as (i) open or closed, and (ii) causal or non-causal.

3.1 Causal Paths
Put your finger on any node of a graph and then trace your finger
along the edges to reach another node and you have described a path.
For instance starting at Home Library in Figure 2(b) then moving up
to Scholarly Culture and across to Academic Achievement traces the
path Home Library← Scholarly Culture→ Academic Achievement.
A path like this shows a connection between the variables Scholarly
Culture and Academic Achievement, but what kind of connection?

3.1.1 Causal or non-causal paths. A causal path from𝑋 to𝑌 means
that if 𝑋 is forced to change then 𝑌 will change also. This is not an
easy phenomena to directly observe in the data alone. Data excels

at showing how the variables are associated, not how influence
flows from one variable to the next — this is why the direction of
the arrows is an essential ingredient of a causal model. However, it
is simple in a DAG to discriminate between causal and non-causal
paths: a causal path is one where all the arrows go in the same
direction.

3.1.2 Open or closed paths. An open path allows information to
flow along it. The way this manifests in the data is that the variables
along an open path will be associated with one another — they will
not change independently. A closed pathwill have a feature blocking
the flow of association so that the two variables at each end of the
path are independent of each other. To decide if a path is open
or closed it is enough to examine a DAG to find one of the three
possible patterns that can arise in them; the chain, the fork and the
collider, depicted in Figure 3.

Chain X C Y open

Fork X C Y open

Collider X C Y closed

Figure 3: The (unadjusted) three elemental DAG patterns;
the Chain, Fork and Collider.

Why is the fork open? 𝐶 is a common cause of 𝑋 and 𝑌 , so
when𝐶 changes we see changes in 𝑋 and 𝑌 together. As they move
together they will appear associated in the data. Why is the collider
different? 𝑋 and 𝑌 are common causes of 𝐶 , so whilst 𝐶 depends
on the values of 𝑋 and 𝑌 there is no reason that 𝑋 and 𝑌 share
information with each other. Plants need water and sunlight to
grow,𝑊𝑎𝑡𝑒𝑟 → 𝐺𝑟𝑜𝑤 ← 𝑆𝑢𝑛𝑙𝑖𝑔ℎ𝑡 . But knowing how much Water
a plant is getting does not tell us anything about much Sunlight it
is getting; information does not flow along this path automatically,
it is blocked by the collider 𝐺𝑟𝑜𝑤 . This all changes if we learn
something about the collider, and for this we will need to discuss
adjustment.

3.1.3 Adjustment, opening and closing paths. Adjusting2 for a vari-
able means that we include our knowledge about the variable in
the analysis. Take the plant growth example, which begins with
the variablesWater and Sunlight independent of one another. Let
us say we separate our study into groups; we look at plants that
are growing well compared to plants that are not, that is we add
knowledge of the variable Grow to our model. In this case, knowing
something about theWater variable within the context of, for in-
stance, dead plants, does say something about the status of Sunlight.
Indeed, if you are looking a plant that is not growing, knowing that
it has plenty of Water tells you something about the likelihood it is
getting enough Sunlight — information now flows betweenWater
and Sunlight, but only if we know the value of Grow as well. To
express this again for any DAG, adjusting for the common cause in
a collider pattern opens the path and allows the flow of association
between variables. Visually, an adjusted variable is placed in a
box.
2Adjustment is also called controlling, conditioning on or stratifying.
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Chain X C Y closed

Fork X C Y closed

Collider X C Y open

Figure 4: The three elemental DAG patterns; with central
variable adjustment.

Why do the other patterns in Figure 4, the chain and the fork,
close when adjusting for the central variable? Remember that ad-
justing for a variable can be conceptualised as learning about that
variable. To illustrate this for a chain let us extend the plant growth
model by adding the path 𝐺𝑟𝑜𝑤 → 𝐹𝑙𝑜𝑤𝑒𝑟 :

Sunlight

Water Grow Flower

(a)

Sunlight

Water Grow Flower

(b)

Figure 5: DAGs with a chains (e.g. Water → Grow→ Flower)
and a collider (Water → Grow ← Sunlight). In (a) associa-
tion flows between Water and Flower but not between Wa-
ter and Sunlight. When we adjust for Grow in (b) this opens
the path betweenWater and Sunlight but closes the path be-
tween Water and Flower.

Knowing if a plant has had enough water certainly tells us about
the chance of it flowering (Water and Flower are associated). But
if we then learn that the plant is growing well, our knowledge of
Water (and Sunlight) loses relevance. To see why, imagine we are
looking at a verdant specimen brimming with life; its high level
of Grow tells us all we need to know about the plants prospect of
flowering — the importance of knowing if it is getting enoughWater
is diminished because the effect of Water on Flower is mediated
through Grow, which we now have knowledge of. As such, within
groups of plants with a similar level of growth (adjusting for Grow)
there is no association between Water and Flower, the path is now
blocked.

3.2 Confounding
Confounding occurs when we have association flowing along non-
causal paths between the two variables we are trying to compare,
which is what is happening when we try to measure the effect of
Home Library on Academic Achievement. Returning to our original
example, the path 𝐻𝑜𝑚𝑒 𝐿𝑖𝑏𝑟𝑎𝑟𝑦 → 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐 𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑚𝑒𝑛𝑡 is

an open causal path. It is a causal path because all the arrows
flow in the direction we are thinking about, and it is an open path
because nothing is ‘blocking’ the flow of information. As the path
is open we would expect to see association between the variables
Home Library and Academic Achievement in the data. As the path
is causal we would expect that manipulating Home Library would
change Academic Achievement. This is the path we are interested
in measuring the strength of.

In contrast, the path 𝐻𝑜𝑚𝑒 𝐿𝑖𝑏𝑟𝑎𝑟𝑦 ← 𝑆𝑐ℎ𝑜𝑙𝑎𝑟𝑙𝑦 𝐶𝑢𝑙𝑡𝑢𝑟𝑒 →
𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐 𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑚𝑒𝑛𝑡 is an open non-causal path. As the path
is non-causal, manipulating Home Library will not influence Aca-
demic Achievement along this path. It represents the causal claim
that adding books to the home library does not change the schol-
arly culture and in turn change academic achievement. As the path
between the variables Home Library and Academic Achievement is
openwewould expect to see an association emerge in a dataset with
these variables — even if there was no direct effect between Home
Library and Academic Achievement! This is due to the common
cause Scholarly Culture; as it increases we expect an (on average)
increase in size of the Home Library and also in a student’s Aca-
demic Achievement. While this results in an association between
Home Library and Academic Achievement the cause of the asso-
ciation is not the Home Library. It is the harder to measure, or
latent, variable Scholarly Culture. This is why Scholarly Culture is
called a confounder, because the total association we see in the
data between Home Library and Academic Achievement comes from
two sources,𝐻𝑜𝑚𝑒 𝐿𝑖𝑏𝑟𝑎𝑟𝑦→𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐 𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑚𝑒𝑛𝑡 (causal) and
𝐻𝑜𝑚𝑒 𝐿𝑖𝑏𝑟𝑎𝑟𝑦 ← 𝑆𝑐ℎ𝑜𝑙𝑎𝑟𝑙𝑦 𝐶𝑢𝑙𝑡𝑢𝑟𝑒 → 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐 𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑚𝑒𝑛𝑡

(non-causal); the direct causal effect of Home Library on Academic
Achievement is confounded by the existence of other open non-
causal paths. If we want to measure the direct effect ofHome Library
on Academic Achievement we need to block the flow of association
along the non-causal path, isolating the causal path that we are
interested in. There are two main methods that can achieve this
goal; randomisation or back-door adjustment.

3.3 Removing confounding through
randomisation

Randomisation involves manipulating how the influencing variable
(Home Library) is generated, and forcing its value (the number of
books) to be randomly assigned. This is what a Randomised Control
Trial does, and in terms of the DAG it effectively removes all arrows
into the influencing variable. This becomes governed purely by
a random process and is now no longer influenced by any other
variable in our model (See Figure 6). However randomisation is not
generally available as a tool in observational studies such as this,
so another way to block the path is needed.

Random Number Scholarly Culture

Home Library Academic Achievement

Figure 6: A randomised control trial DAG.
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3.4 Removing confounding with the back-door
adjustment

The non-causal path Home Library ← Scholarly Culture → Aca-
demic Achievement is known as a back-door path since it begins
flowing against the direction of the arrow. The back-door adjust-
ment provides a method of closing back-door paths by adjusting
for key variables to block the flow of association along the path.

In terms of our example adjusting for Scholarly Culture blocks
the flow of information along the path Home Library← Scholarly
Culture→ Academic Achievement. This is because knowing about
the level of Scholarly Culture tells us everything we want to know
about the strength of the association between Home Library and
Academic Achievement due to this common cause, information no
longer flows along this path.

Scholarly Culture

Home Library Academic Achievement

Figure 7: Blocking the non-causal path by adjusting for
Scholarly Culture.

So if we can measure the association between Home Library and
Academic Achievement within levels of Scholarly Culture and then
pool the results we obtain an unbiased estimate of the causal effect
of Home Library on Academic Achievement, assuming the DAG is
sufficient. We could do this by surveying all families in our system,
to measure their scholarly culture, and then segmenting our sample
accordingly.

4 THINKINGWITH A CAUSAL MODEL
To think with something is to inhabit its world in a meaningful
way [16], with the hope for exploring the diversity of sense making
and so cultivating a more collaborative and inclusive process [62].
Models are often used to explain and predict, but the traditional
focus has been upon the final model, not in the process of con-
structing the model itself. We posit here that this process of model
construction, aided by causal modelling tools, may be as fruitful to
LA as the final product. This is because modelling forces us to make
explicit what we consider important in a system, and what can be
safely ignored. We propose that deeply engaging with the world
of causal modelling has the potential to catalyse rich collaborative
sense making. Specifically, the development of a graphical causal
model makes explicit an often obscured process; the abstraction of
a model from the context in which it resides.

The DAG serves as an artefact to help facilitate collaboration
across disciplinary boundaries and so leverage a wider variety of
expert knowledge, potentially inviting a greater breadth of expertise
to the LA development table. DAGs are a way of reducing artificial
complexity in understanding relationships between variables. For
instance𝐴→ 𝐵 → 𝐶 is rich in data about conditional independence
between the variables 𝐴, 𝐵 and 𝐶 ; you could state that C and B are
not independent, B and A are not independent, and C is independent
of A conditional on B (with notation𝐶 ⊥ 𝐴|𝐵), and those statements
do not capture the postulated direction of the effect. These are

also more foreign mathematical concepts and symbols for a non-
technical audience to interpret and challenge. The causal model
and DAG seems to keep the natural complexity of the model intact,
while minimising its artificial complexity.

5 THINKING WITH A STUDENT RETENTION
MODEL

To make the above rather abstract concepts more explicit, we will
now consider a real world modelling scenario, to demonstrate the
utility of causal modelling to support thinking and collaboration in
transdisciplinary teams. In what follows we will make use of the
widely studied problem of student retention and support [22]. In
the spirit of “thinking with diagrams”, we present this in a stylised
form of analyst’s narrative, as though we were thinking aloud with
colleagues, using the causal diagrams to clarify our thinking.

5.1 Causal models in the retention space
Not everyone succeeds in their academic studies, but a better un-
derstanding of what helps a student persist is important. In LA,
student retention normally centres around the prediction of “at risk”
students who need to be supported in some way via an intervention.
While some early attempts used student dashboards [43], it has
by now become common to contact students identified as at risk
via a phone call that offers them support, and potentially discuss
changing their study load. Finding the best way to intervene in
this complex scenario is a challenge [15], it remains hard to know
which lever to pull. The effectiveness of an intervention requires a
model that can offer explanation as well as prediction. Since this
area of LA has been extensively studied, we need to demonstrate
what more could be gained through the use of a causal model.

Interestingly this space has already been approached from a
causal perspective, years before the formalisation of methods in-
volving DAGs [41] emerged. Kember proposed a causal model of
student persistence [23, 24], that operationalises earlier work by
Tinto on a conceptual model of student dropout [59]. Woodley et al.
[66] has since pointed out that dropout is complex and comes in
many forms, possibly requiring a different model for each.

Our example will centre around a particular case of a student
support system at Charles Sturt University (CSU) aimed at early
intervention, primarily via a phone call [32]. This example was
chosen as it is a central part to the work done by the first author
at CSU (BH). Students are identified in week 3 or 4 of the session
and put on a list to be called by a student outreach team. Students
on the “at-risk” list are all contacted in some form (sms, email) and
phoned multiple times, but a conversation with an outreach team
member can only happen if the student answers the phone. The
overall aim is to reduce failure rates in subjects, particularly due to
the non-submission of assessments. As a result, ‘success’ may be
due to one of two possible outcomes: guiding the student to existing
support structures, or towards withdrawing from the subject. In
the scenario to be modelled here, CSU was trying to ascertain what
effect the intervention has on the academic outcome of a student
identified as at risk of failure.

On ethical grounds, a randomised controlled trial was not possi-
ble, since the goal of the project was primarily to support as many
students as possible; understanding the projects’ effectiveness was
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a secondary level goal, but not the principle raison d’être for the
project. Nonetheless, we see the potential for using two subgroups
of students to make claims about the effectiveness of the project;
students who received the intervention (by answering a phone call)
and those who do not (they did not answer any of the calls). Mem-
bership of either group is not randomly assigned, however, so any
attempt to assign a causal effect of the intervention on the outcome
would need to also understand and account for how students are
assigned to the two groups. In what follows we will illustrate how
causal modelling can help us to reason about this scenario.

5.2 The Causal Model
5.2.1 Starting somewhere. The model construction begins simply
with a hypothesis that: 𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 → 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 . In this case,
𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 denotes whether or not the student had a conversation
about their options with an outreach caller, while𝑂𝑢𝑡𝑐𝑜𝑚𝑒 denotes
if the student passed all their subjects they remained enrolled in or
not. We immediately encounter a problem in our modelling.

Problem 1: The intervention does not directly change the outcome,
rather, it changes some unmeasured attributes of the student that
drive their academic decision making.

5.2.2 Where lies what we do not know? To address this problem,
we can add a variable in between Intervention and Outcome that
represents the changeable academic attributes of the student that
affect their chance of success. It is these changeable attributes that
we are trying to influence with our phone intervention. Let us call
this variable Mutable, to represent that these student attributes are
malleable. Our resulting enhanced model is depicted in Figure 8.

Intervention Mutable Outcome

Figure 8: A DAG relating an Intervention to an Outcome, via
a mediator ofMutable student academic attributes.

Thinking: In Figure 8 we have started with a near minimal DAG.
Although far from ideal, once drawn it can be interrogated by
others, and the building of the causal model becomes a collaborative
process of thinking with the model. However, in making explicit
our assumptions, we quickly hit a new problem.

Problem 2: What is it we are not seeing? This modelling exercise
began because an educational expert had voiced a suspicion that
the selection of students into the Intervention group (i.e. those
who answer the call) is not random. But if this the case, and we
have wrapped these student attributes into Mutable, then Mutable
influences Intervention as well as the other way around. We have a
loop. This is not allowed in DAG (remember the A is for Acyclic).

5.2.3 Making time acyclic. We can avoid loops in a DAG by care-
fully splitting variables into ‘before’ and ‘after’ some epoch, in this
case we can split𝑀𝑢𝑡𝑎𝑏𝑙𝑒 into before the phone call,𝑀𝑢𝑡𝑎𝑏𝑙𝑒𝑡=0,
and after the phone call,𝑀𝑢𝑡𝑎𝑏𝑙𝑒𝑡=1, an update that is now reflected
in Figure 9.

Thinking: The maxim that causes should precede effects is a use-
ful device to help sharpen thinking about a causal model. However,
working out exactly where to divide the model of data into before
and after can require some finesse.

Intervention

Mutable𝑡=0 Mutable𝑡=1 Outcome

Figure 9: Adding an epoch, before and after the phone call.

Problem 3: At the moment, because the Mutable variables are
unmeasured, there is no way to adjust for the back-door path
𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 ← 𝑀𝑢𝑡𝑎𝑏𝑙𝑒𝑡=0 → 𝑀𝑢𝑡𝑎𝑏𝑙𝑒𝑡=1 → 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 . This
means there is no approach, with the current model, to find the
causal effect of Intervention on Outcome.

5.2.4 Leveraging educational theory. We have placed unknown
(i.e. latent) student attributes into our model, now we add further
structure to our model using an insight raised by our educational
expert; there are student attributes that we cannot change. We
denote these Fixed, and in Figure 10 we use them to represent any
student qualities that we can measure prior to the intervention that:
(i) remain fixed throughout the study session, (ii) are measurable,
(iii) influence the chance of the student answering the phone, (iv)
influence student outcomes through the Mutable attributes. The
most important thing to note when augmenting a graphical causal
model like this is the lines that are not drawn.

Fixed Intervention

Mutable𝑡=0 Mutable𝑡=1 Outcome

Figure 10: Adding Fixed, a variable of known (relatively
fixed) student attributes.

In the case of Figure 10, we should note that there is no direct
path between 𝐹𝑖𝑥𝑒𝑑 and𝑂𝑢𝑡𝑐𝑜𝑚𝑒 . This amounts to using the model
to claim that the effect of 𝐹𝑖𝑥𝑒𝑑 on 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 is always mediated
by𝑀𝑢𝑡𝑎𝑏𝑙𝑒 . The dashed path from𝑀𝑢𝑡𝑎𝑏𝑙𝑒𝑡=0 to 𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 in-
dicates some doubt over including that path. Indeed, this dashed
path indicates our concern that there may be some student charac-
teristics in Mutable that impacts directly upon the likelihood of a
student receiving an intervention (i.e. in this case answering the
phone call) that is not explained through the common cause, Fixed.

Thinking: We have split the variables describing our students
into two parts: mutable ones that cannot be measured, but which
we are trying to influence with our intervention, and a separate
set of fixed, measurable variables that are likely to be useful in
segmenting our student population. At this point it is not necessary
to determine exactly what Fixed orMutable are comprised of; these
are place holders for everything we know about the student that
we think affects the other variables in a particular way. This level of
abstraction helps move forward in discussing the causal structure
quickly, without getting stuck in details that someone unfamiliar
with the system may not (care to) know about. However, an educa-
tional expert could work with the modeller to decide what belongs
in them. Fixed might include variables relating to: socio-economic
status, gender, and first language, whereas Mutable could include
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variables relating to: employment status, study load, grit, and work
ethic.

Having worked through this exercise, we can now see how to
measure the causal effect of interest, but howwe do this will depend
on our assumptions around the path𝑀𝑢𝑡𝑎𝑏𝑙𝑒𝑡=0 d 𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛.
If this path is weak enough to be ignored, meaning we believe the
association between Mutable and Intervention arises mostly from
their common cause Fixed, then there is only one non-causal path
to block: 𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛← 𝐹𝑖𝑥𝑒𝑑 → 𝑀𝑢𝑡𝑎𝑏𝑙𝑒𝑡=0 → 𝑀𝑢𝑡𝑎𝑏𝑙𝑒𝑡=1 →
𝑂𝑢𝑡𝑐𝑜𝑚𝑒 . This can be blocked by adjusting for Fixed.

Problem 4:On the other hand, if we believe the path𝑀𝑢𝑡𝑎𝑏𝑙𝑒𝑡=0 d
𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 should be included in the model then there is no way
to use adjustment to block the non-causal path 𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 ←
𝑀𝑢𝑡𝑎𝑏𝑙𝑒𝑡=0 → 𝑀𝑢𝑡𝑎𝑏𝑙𝑒𝑡=1 → 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 as we cannot adjust for
the unmeasured 𝑀𝑢𝑡𝑎𝑏𝑙𝑒 variables. In this case there is no way to
get an unbiased estimate of the effect of the Intervention on the
academic Outcome of the student. This would be reflected in the
data, and so we now have a testable set of claims that can be used
to investigate this scenario further.

5.3 What was gained by this approach?
Despite the ambiguous end result of the retention causal model, the
final model did provide two clear pieces of knowledge: (i) it helped
us to clearly scope the assumptions required for estimating a causal
effect, and (ii) it provided us with a method for estimating this
effect if the assumptions are met. The process of constructing the
model through dialogue and diagram also provided us with insights
that helped clarify our thinking about this scenario. The first was
the introduction of the Mutable variable and thinking about what
exactly is it that the intervention was trying to change. The second
was a clearer understanding of why the system was complex — the
many confounding factors are challenging to place in the model
structurally and temporally. These insights were gained prior to
looking at the data, through the careful incorporation of concepts
from educational theory, and in dialogue with educational experts.

6 CONCLUSION
Perhaps the greatest benefit of an explicit causal infer-
ence framework is that it requires us to be more precise
about the causal questions we are asking, thus enforcing
conceptual consistency. Rohrer et al. [47, p4]

Established participatory design tools empower non-technical
stakeholders by using “low tech, high touch” materials or soft-
ware. However, intentionally sacrificing formality in the process
excludes those stakeholders from downstream modelling. Diagram-
matic reasoning with causal models complements such techniques,
seeking to sustain that participatory engagement by making trans-
parent, and contestable, the causal assumptions that the computa-
tional/statistical modellers would otherwise be left to code alone.
The DAG as a diagrammatic tool demystifies an abstract process
by stripping away much of the notation and language of statistical
modelling, and in doing so enables a greater diversity of researchers
and practitioners to decide upon what LA gets created, and how the
models are developed. It is important that no mention of regression
or more advanced statistical techniques is required for the graph-
ical model construction; no one involved in the discussion needs

to know which variables to adjust for. Nonetheless, the graphical
structure of the model provides a collaborative mechanism for peo-
ple with strong theoretical foundations, but less technical expertise,
that helps them to contribute their knowledge to the LA modelling
process. This knowledge, translated by the DAG, provides very
concrete implications for the analyst to use as they implement the
resulting model. The framework represented by DAGs also brings
with it an extended apparatus for reasoning causally about systems,
and so delivers new actionable insights.

In summary, this paper has contributed a new perspective on
the question of “Who decides what learning analytics get created
and implemented?” We hope that this rich and rigorous technique
appeals to the field, as its widescale adoption would help LA to
start moving up the “ladder of causation” [42] from association
and towards models that can make stronger causal claims about
learning and the environments in which it occurs.
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