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Learning Analytics (LA) aims to improve the learning process. This necessitates a causal interpretation of
observational data. One way to model causal structure is by using causal Directed Acyclic Graphs (DAGs).
The visual formalism of the model requires little technical knowledge to engage with, providing an
opportunity for non-technical experts to remain engaged deep into the crafting of critical statistical
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assumptions about the learning system, including the importance of latent variables.
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A DAG is a graphical representation of how variables influence each
other in a system. If we think changes in A result directly in changes in B
we draw A — B. This forms a Directed Graph (DG). If it is also Acyclic (no
loops) then we have a DAG, which has a precise mathematical
translation to the joint probability distribution of the data which can be
leveraged in a several ways.

Can | just have a go at
drawing one with you

now?

Constructing a causal DAG requires minimal
technical knowledge. This means it offers a way for
non-technical Education experts to describe the
Important aspects of a learning system so that it

Abstract but accessible

can be leveraged by Data experts.
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Interrogating the model, together

The graphical model can be interrogated at any
point using prompts (such as the example below).
This helps facilitate precision in thinking about what
Is important in the system.

From graph to causal claim

Any given causal DAG directly translates to how we
can decompose a joint probability distribution,
using do-Calculus (Pearl, 2009). For instance, the
graph X <Y = 7 describes the factorization
P(X,Y,Z) =P(X|Y)P(Y)P(Z|Y) and with it the
conditional independence X 1 Z|Y.

What is important here is t
how best to understand the causal relationships
between variables. Typical
causal relationships from observational data by
understanding which variables to control for to
minimise bias (Weidlich et al., 2022). This set of
variables, for a given relationship, is known as the
adjustment set.

nat each DAG describes

y, this is used to find

tween ? X — M —Y
(M is called a mediator which we are inserting into the path X — Y")
M
Are there other things (M) that X changes that in turn change Y ? PN
(Adds a new path with a mediator in it)
X

Does X influence Y directly, or is there some other variable (M) in be-

Beginning with any two causally connected nodes in the graph: X —Y

implied conditional

Testable learning theories

Kitto et al. (2023) outline a way to use a causal DAG
of a learning theory to generate a collection of
independence relationships.
These can be used build tests to examine to what
degree the theory holds in the observed data.

Abstraction allows comparison

Models built from a range of stakeholders can be
compared. The formal requirements of constructing
a causal DAG allow for easier comparison — the
price to achieve this is paid through reducing the
complexity of the system so it can be modelled.

One of three Self-regulated
Learning causal DAGs postulated
in Kitto et al. (2023)

DAG informed dashboard design

An adjustment set of variables has implications
beyond statistical models. If a dashboard shows a
comparison between X and Y then an unbiased
view of the data should compare these variables
within levels of the adjustment set. This could be
implemented with filters, slicing or aggregation.

PhD publication plan

This poster describes a slice of the work towards my PhD. Feedback welcome, and
cases to take part in collaborative modelling very welcome!

A paper (not yet written) to help
frame this kind of thinking.

A paper and a commentary introducing using DAGs as a way to
think about education system.

Describing bounds for locally
linear causation

When we model a system using a DAG we
are describing a system with linear

causation — effects are additive. In reality
most learning systems will exhibit non-
linear causation if we look closely enough.

This (more philosophical) paper will argue
that the key is to describe the boundaries
within which the system is sufficiently
describe with linear causation (such as a
DAG).

An idea of what to do when
non-linear causation is required.
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student’s examination skills, possibly improving learning
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1.1 Challenges facing the field of Learning
Analytics

Beyond the technical challenges of gathering useful data from mul-

tiple disjoint LA systems [28], building new methods of analysis
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RQ: How can game theoretic models connect intangible data to
the data that we have available in LA?
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